Artificial Neural Networks and Efficient Optimization Techniques for Applications in Engineering
نویسندگان
چکیده
This chapter proposal describes some artificial neural network (ANN) neuromodeling techniques used in association with powerful optimization tools, such as natural optimization algorithms and wavelet transforms, which can be used in a variety of applications in Engineering, for example, Electromagnetism (Cruz, 2009), Signal Processing (Peixoto et al., 2009b) and Pattern Recognition and Classification (Magalhães et al., 2008). The application of ANN models associated with RF/microwave devices (Cruz et al., 2009a, 2009b; Silva et al., 2010a) and/or pattern recognition (Lopes et al., 2009) becomes usual. In this chapter, we present neuromodeling techniques based on one or two hidden layer feedforward neural network configurations and modular neural networks − trained with efficient algorithms, such as Resilient Backpropagation (RPROP) (Riedmiller & Braun, 1993), Levenberg-Marquardt (Hagan & Menhaj, 1999) and other hybrid learning algorithms (Magalhães et al., 2008), in order to find the best training algorithm for such investigation, in terms of convergence and computational cost. The mathematical formulation and implementation details of neural network models, wavelet transforms and natural optimization algorithms are also presented. Natural optimization algorithms, which are stochastic population-based global search methods inspired in nature, such as genetic algorithm (GA) and particle swarm optimization (PSO) are effective for optimization problems with a large number of design variables and inexpensive cost function evaluation (Kennedy & Eberhart, 1995; R. Haupt & S. Haupt, 2004). However, the main computational drawback for optimization of nonlinear devices relies on the repetitive evaluation of numerically expensive cost functions (Haupt & Werner, 2007; Rahmat-Samii, 2003). Finding a way to shorten the optimization cycle is highly desirable. In case of GA, for example, several schemes are available in order to improve its performance, such as: the use of fast full-wave methods, micro-genetic algorithm, which aims to reduce the population size, and parallel GA using parallel computation (R. Haupt & S. Haupt, 2004; Haupt & Werner, 2007). Therefore, this chapter
منابع مشابه
Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملOptimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm
Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...
متن کاملOptimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm
This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملNeural Networks in Electric Load Forecasting:A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
متن کامل